
4-1

���������	

��������������
���������������

� ��������	
���
� ������ ����	�������	�����������
�

Planning the Year 2000 conversion effort was discussed in Chapter 2
Application Analysis. After the planning phase, renovation can begin.
Because Year 2000 is such a pervasive issue that requires an extensive
amount of communication between technical team members, it is
imperative to have a comprehensive plan in place before proceeding. It is
equally as important to adhere to the plan. Unforeseen circumstances will
force changes to the plans. Once conversion has begun, any change must be
documented and widely communicated to all affected parties.
Communication and coordination are the key challenges to the Year 2000
renovation effort.

� ������ ��
	�������������������	������

The development team establishes a baseline before Year 2000 renovation
begins. The team must put in place a solid process for tracking Year 2000
and normal production changes to that baseline.

By having this baseline, the changes can be determined and undocumented
changes can be identified. If parallel development was used, the two
revised sets of code can be compared to the baseline, then the change sets
can be identified and merged to create the Year 2000 compliant version.

Figure 4-1 depicts an established baseline from which two processes begin;
production code changes (top); and Year 2000 renovation changes
(bottom).

At the end of the renovation effort, the changed production and renovation
code are compared to the baseline and the two versions are merged into a
final version.

There are two stages to these merges:

 1. The physical merging of the two sets of code. This can be automated
with a report showing change collisions.

 2. A validation that the logic changes on the two paths do not interfere with
each other. This requires testing and validation.

��	�
�����

���������	

��������������
�����������������	
��� ���������������

4-2

 �������!�� �"�	�#�����	�	�����$������%��
�&�
���
���

The Year 2000 Project Office is exploring several options for how to best
track parallel development or emergency changes to production code. The
following information is based on the work to date for this ongoing effort:

���For the Unisys systems, application development teams can use
Downdater to track changes to code. The Symbolic Stream Generator
(@SSG) can be used to merge the changes and produce a list of changes
which collide. See the HUD Year 2000 Tools Overview, Document F
in the Reference Library for a description of this Unisys Change
Analysis Method.

���For the Hitachi platform, HUD has purchased Computer Associates’
companion tools ENDEVOR and Parallel Development Manager. See
Document F of the Reference Library for additional information
about these tools or send a message to the Team 2000 cc:Mail box at
Team_2000@HUD.gov.

���On the PC/LAN, tracking parallel development is easier because the
applications are smaller and therefore less time is involved. PVCS is a
good over-all tool for this task, although each application’s case should
be considered on an individual basis.

� ���'�� ����������

� ���'����� $�����������

Design rules were established in the high level application analysis phase.
They determine the use of either field expansion, windowing, or a
combination of the two techniques. In addition to these overall design
rules, a conversion strategy must be determined for each date impacted
field/variable. See Chapter 2, Application Analysis for more
information.

���������	

���

�	���

�	����

�����	�

�����

�	��������

�����	��	�������

��	�

���������	

������	

��������

��	�����	

�	���

���������	

��������������
��������������� �����������������	
���

4-3

� ���'����� "�	�����
��(�$	
�����
����

TransCentury date routines are the HUD standard for date manipulation on
both the Hitachi and Unisys mainframes. The routines are used for
obtaining an 8-digit system date. For more information on TransCentury
Date Routines, see HUD Year 2000 Tools Overview, Document F in the
Reference Library.

� ���'��'�� �����	%%��)������#���

A valuable tool during the renovation phase is a programmer's checklist. A
checklist:

���Ensures consistency of approach;
���Maintains quality deliverables;
���Establishes, monitors, and maintains a repeatable process; and
���Assists renovation teams in training junior-level programmers.

Refer to the Reference Library, Document D for the Year 2000
Checklists, Worksheets, and Templates.

� ���'����� *���
����%�*%�	�
�&�	�(����"����

Impact analysis tools produce reports of varying levels of detail. Some
reports from analysis tools are useful as input to the renovation phase. For
example, the System Vision 2000 impact analysis tool (for Hitachi)
provides reports listing every impacted line of code. This report can be
given to a programmer as a reference when renovating code. System
Vision 2000 also has an Interactive System Productivity Facility (ISPF)
utility that walks the user through the source code online to support the
change process. For more information on Impact Analysis Tools, refer to
the HUD Year 2000 Tools Overview, Document F in the Reference
Library .

� ���'��+�� $���%��
	
���

There are multiple levels of documentation required during the renovation
phase. Below are some major categories:

���Status,
���Program improvement/changes,
���User impact/change specification, and
���File and database structure changes.

���������	

��������������
�����������������	
��� ���������������

4-4

� ���'��+����� �
	
���$���%��
	
���

It is important that status information is shared with points of contact for
interfacing systems, especially if renovation efforts are dependent on these
systems. The STATUS 2000 database serves as the central point for
tracking progress and reporting status on all HUD Systems (See STATUS
2000 Database Information, Document I in the Reference Library for
user information).

� ���'��+����� �����	%�*%�����%��
,��	����

This documentation must contain a change number and may be recorded
on the sample Program Improvements/Changes form available in the
Reference Library, Document D. This form is designed to collect
information such as:

���Program ID,
���Stage of Testing, and
���Improvement/Change.

All changes must be identified in the code. In order to comply with the
known future audit, the programmer's change log in the remarks section at
the beginning of the program/module must clearly document all changes
made, identify them as Year 2000 changes and identify the programmer's
initials, the date the change was made, and the change number.
Programmers must also insert comment/change lines before and after each
change in application code.

The National Bureau of Standards has studied the issue of documentation.
See Federal Information Processing Standards Publication 38 (FIPS PUB
38), Guidelines for Documentation of Computer Programs and Automated
Data Systems.

� ���'��+��'�� -����*%�	�
,��	������������	
���

The standard user change approval process must be followed for any
change in functional performance and/or look and feel of an application due
to Year 2000 renovation.

� ���'��+����� ����	���$	
	�	����
���
������	����

Any file and/or database table changes must be reflected in technical
documentation. Database impacts must be communicated to the
responsible database administrator (DBA) and approved.

� ���'��+��+�� $���%��
	
���������	����

Software changes should be documented using standard techniques as
described in HUD's Systems Development Methodology (SDM).

���������	

��������������
��������������� �����������������	
���

4-5

Given the likelihood of audits, all changes must be clearly recorded. At a
minimum, the following should be placed in any altered program:

���A description of the changes, the date and the name of the person
making the change must be added to the REMARKS section of a
COBOL program.

���Every changed line of code must have initials and date placed in
columns 73-80.

� ������ $	
	�	������������	��������	��.	
���

The key objective of this task is to identify all changes to the databases of a
release and complete those changes. The primary change is to expand year
fields from two to four digits, and to populate the extra two digits with the
appropriate value for the century. However, additional changes might be
required. For example, the definition of the sort field or index field might
be modified. In extreme cases, the database physical layout might be
changed if record length or database size constraints are exceeded or if
performance is degraded beyond an acceptable level.

Below are the general steps involved in making Year 2000 design changes
to logical and physical database designs:

 1. Revise design for database structures,
 2. Review and refine database design, and
 3. Verify, rebuild and convert data.

� ��������� �������$����������$	
	�	����
���
����

For the logical database redesign, the functional analyst must identify all
date columns from application tables that must be expanded, as explained
in Section 2.4.1, Identify Date Field Changes. If a column to be
expanded or changed is a key field, existing relationships between tables
must be verified after the column expansion. Changes to logical design are
performed by the functional analyst.

The Database Administrator (DBA) works with the functional analysts to
coordinate changes. The DBA evaluates any required redesign of the
physical database. The current grouping of tables into physical storage
must also be evaluated. The DBA must determine if reallocations of free
space and buffer sizes are needed.

For expanding columns, the data element descriptions and table space
descriptions must be modified to reflect Year 2000 changes. Create a list
of all the program components that are affected by table expansion. For
every data file or database, the analyst specifies:

���If the data file or database is to be expanded in this release,
���The data conversion template to be used for this expansion,
���If the interface is to be bridged in this partition,

���������	

��������������
�����������������	
��� ���������������

4-6

���All programs that require bridging and whether the program reads
and/or writes from/to this interface, and

���The bridge template to be used.

The DBA is responsible for creating the new copybook as a result of the
field expansion.

� ��������� �����/�	����������$	
	�	���$�����

For cases where changes are other than field expansion (for example,
collapse date-related columns) the DBA executes and tests changes in a
non-production environment. A traffic analysis must be performed. Note
that if change is only to physical design, traffic analysis testing may be
delayed until system testing. Database options (for example, space
allocations, table space partitioning) must be reviewed and possibly
updated. The redesign process must be repeated until an acceptable
performance level is reached. Next, the design is reviewed with the
corporate database administrator.

� ������'�� 0����(�0	����
(����*���%����$	
	

Systems routinely edit incoming data files to verify that they meet certain
criteria. These edits provide assurance that the data is reasonable and that it
conforms with parameters meant to ensure error free processing.

With so many alternatives available to programmers in deriving four-digit
year representations, it is quite possible that the source system(s) may be
sending incorrect dates or that it may have incorrectly calculated a data
field as a result of incorrectly derived dates (e.g., age figures are incorrect
because calculations are being performed with incorrectly derived century
digits). This issue grows larger if the source is from an external trading
partner where the IT culture is less predictable and less likely to conform
with internal assumptions and conventions.

It is especially important, therefore, that the developer of the receiving
system re-examine the error processing procedures and possibly revise
them to obtain corrections if corrupt data is detected, or if no file is
received. This will likely necessitate contact with the data sender(s). Also,
users may need to be consulted to completely assess the business impact of
data corruption or processing disruptions brought about by corrupt data.

� ���+�� $	
	������������	���������������	%�"�%��	
��

A Year 2000 implementation may involve hundreds of data files and
databases. If no tool exists to perform these transformations, the
implementation of hundreds of data conversion programs and bridge
programs becomes necessary. Although this may be a very large effort, the
designs of these programs are usually quite simple and similar to each
other.

���������	

��������������
��������������� �����������������	
���

4-7

� ���+����� "����������	%������$���������"�%��	
��

The objective of this task is to design a set of easy-to-use templates to
assist in the development of data conversion and bridge programs. A Year
2000 implementation may require up to three different types of programs:

 1. A data conversion program is needed when there is a design change to a
permanent data file or database, most typically the expansion of one or
more year fields from two to four digits. Other changes might involve
sorting and indexing.

 2. A bridge program lets the sending and receiving functions modify their
code on separate schedules. A bridge is needed when there is a design
change to a data file or database, whether or not it is permanent, and the
programs which interface with this file are being converted in different
releases. HUD's approach is to build external bridges not coded within a
program and run as a separate step. This lets programs effectively process
exchanged data.

 3. A data extraction program can be used to create test data from existing
data. This case can be applied whether or not the file is permanent, as
long as it is an input to or an output from a test. The program may
perform year field expansions, and also generate modified dates, such as
21st century dates.

� ���+����� 1�2��
�����	����
���
�������"�%��	
��

The objective of using templates is to encapsulate the common design
elements and to make it as simple as possible to develop each individual
data conversion or bridge program.

Each template includes the following:

���A file containing a complete, compilable, executable program, which
does the data conversion of a single file or implements a single bridge.
A sample of the conversion program is provided in the Reference
Library. The program contains highly visible comments describing the
parts of the code which must be replaced, and additional comments
providing instructions on how to customize the code for a specific case.

���A complementary document which describes:
• When to use the template (for example, which types of files it can be

used on), and
• How to use it.

���Complementary templates of Job Control Language (JCL) or other files
(for example, the JCL to actually execute the data conversion program).
If the amount of JCL that can be re-used is truly minimal, then include
the documentation on the JCL requirements.

���������	

��������������
�����������������	
��� ���������������

4-8

This task consists of the following subtasks:
���Identify the implementation technology (or technologies) to use. For

example, File-AID, Data Xpert, COBOL, etc.;
���Determine the set of templates needed for VSAM, DB2 and IMS DB;
���Write design specifications for each template.

� ���+��'�� &�
�%	
���"�����	���"�%��	
��

If an automated tool is available (such as File-AID), then the tool might be
used instead of a program. The program template would be replaced by a
template for tool inputs, and the JCL template would be replaced by a JCL
template which executes the tool. A good tool might reduce the cost of
developing data conversion and bridge programs significantly.

� ���+����� 3��
�����"�%��	
��

A Year 2000 implementation project may need multiple data conversion
and bridge templates, with different templates designed for different types
of data files and databases. This could include basic sequential files or
more complex files (such as sorted vs. unsorted, indexed vs. not indexed,
single vs. multiple record types).

The number of templates required may also depend on the interface design
rules selected for this project. For example, if the design rule is to
minimize changes to files, then there may be no requirement for bridge
programs, and therefore no bridge program templates. Conversely, if the
design rule is to always expand year fields from two to four digits, then a
comprehensive set of templates might be required.

� ���+��+�� "�%��	
��*������������������	
���

Some issues to consider when designing the templates include:

���Would conversion requirements be satisfied by creating SYNCSORT or
CLIST routines?

���Is there any utility provided by the application's DBMS or File
Management product that can be used instead?

���Must the conversion program update the table directly or only update a
file that could be uploaded as a table?

���Must the conversion program convert specific records or convert the
whole table in one run?

���Most of these programs are used only a few times, so performance and
ease of use are less critical than for the application itself. However,
reliability and integrity controls are just as important.

���The conversion or bridge program templates and their I/O modules must
be as generic as possible (for example, one conversion program that is
able to convert any data file with varying lengths).

���Design templates must accept different parameters.
��

���������	

��������������
��������������� �����������������	
���

4-9

� ���+��4�� ����������,������������	%���������	
����$���%��
�

The following are the documents that may be included in conversion or
bridge program specification. The exact structure of the specifications
depends on the organization of the team, the language, and the tools used:

���Module abstract,
���Module flow diagram,
���Conversion requirement/flow,
���Structure chart,
���Design issues document,
���Potential test conditions,
���Input file/table layouts, and
���Output file/table layouts.

See the Sample Conversion/Bridge Program Template in the Reference
Library, Document D.

� ���+��5�� �����������������	����������"�%��	
��

Each renovation team is responsible for developing a set of data conversion
and bridge program templates. There needs to be a template for each type
of data set, (such as sequential or VSAM, or data base). When possible, the
template uses File-AID (on the Hitachi) as the actual data converter;
otherwise a COBOL shell program with generic logic for reading input
files and writing output files of varying lengths must be provided.
Customizable JCL will be included as part of the template.

� ���4�� $������$	
	������������	���������������	%�

Data conversion and bridge programs are used to convert data from one
record layout to another. These programs are submitted to run once during
file and/or data base conversion.

� ���4����� �6���
����������������	%�

Bridge programs are executed during program flow. It becomes part of the
normal operating environment, at least for a period of time (for example,
programs created to bridge between a new program and a program in-
between release are deleted from batch flow once both programs are using
new release. Note that programs created to bridge between a new release
and other systems –especially those external to HUD, such as systems of
business partners– may become a permanent part of batch flow.)

���������	

��������������
�����������������	
��� ���������������

4-10

� ���4����� �6���
��������������������	%�

The conversion occurs each time data is passed between old (unchanged)
programs and new (changed) programs or between a program and external
data using a different format.

In most cases, Year 2000 data file and database conversions require logic to
populate century values that would be linked with the old date value.
Depending on how easy it is to identify the century for a certain year and
what is being converted, the data conversion may be a query (for example,
SQL or QMF), may be a routine or a series of commands (such as CLIST,
SYNCSORT, File-AID/MVS, File-AID/XPERT), may be one separate
module (such as a COBOL program) or a combination of these.

� ���4��'�� �
����	��� 	�
�����������������,������������	%�

Below are the general steps and factors involved in designing conversion
and/or bridge programs, usually carried out by the functional analyst:

���Review existing documents. Study the updated data file and database
design documents and revised copybooks, then design a conversion
program to convert one file or table at a time.

���Select a data conversion or bridge program template. Choose the
template which most closely matches the conversion or bridge required
(for example, one determined by the type of file or database and the
types of records to be converted).

���Write a data conversion/bridge program specification, identifying
the customizations needed for the template. In many cases, the
specification is completely encapsulated by the differences between the
old and new copybooks, together with a specification of the century
values to be put in the expanded year fields.

���Include data verification routines in data conversion and bridge
programs. Data conversion programs must have standard error
reporting functions flagging invalid dates. Extensive knowledge of the
data is crucial for this task. Database administrators or users who
regularly work with the data are good resources to utilize here.

� ���5�� ������$	
	������������	���������������	%�

This task entails programming and unit testing of conversion and bridge
programs and their integration with the updated source code modules. The
testing techniques for these programs are not really different from the
mainstream application programs. They are called out here because Year
2000 implementation projects usually have them and they have an impact
on the workplan and costs of the project. Furthermore, Year 2000
conversion requires a substantial amount of effort because of the sheer
volume of files and programs affected by the century date change.

���������	

��������������
��������������� �����������������	
���

4-11

Note that the detailed Year 2000 test conditions in Chapter 5, Testing, do
not apply. Moreover, there are no separate tests for old (without Year 2000
logic) and new (with Year 2000 changes) versions of the programs since
there is only one version of data conversion and bridge programs to test.

� ���5����� �	�������������7�	���888� ������	����

The basic logic for Year 2000 file changes may include the following:

���Expansion of the year or date field to accommodate the 2-byte century.
���Defaulting of hard-coded 19 to the century field of the date or year if the

system processes transactions within the 20th century only.
���Formatting of the century of date or year fields with 21st century values

to test if the program can handle dates beyond 1999.

� ���5����� �	�������������������������	%�

Year 2000 bridge programs are also used to convert old and new date
impacted file formats in different releases. They can have any of the
following logic:

���Reading an input file with a 6-byte date field (YYMMDD) and writing
to an output file with 8-byte date field (CCYYMMDD), or vice-versa,
going from 8-byte to 6-byte.

���Moving a 2-byte year field (YY) to a 4-byte year field (CCYY) for
programs that process the new file format.

���Moving a 4-byte year field (CCYY) to a 2-byte year field (YY) for
releases requiring the old file format.

� ���5��'�� ��%���
����$	
	�����������,������������	%�"	�#

The following are the steps involved in completing this task:

���Review the Data Conversion/Bridge Program Specification (see
Section 4.5.6 for background).

���Code the program based on the template named in the specification.
���Check the source code for syntax errors. Edit, if necessary, and recheck

until ready for unit test.
���Test bridge programs with the updated source modules during the

application's system test phase.

���������	

��������������
�����������������	
��� ���������������

4-12

� ���9�� �6���
��$	
	������������	���*%���%��

� ���9����� ���	
��$	
	��������������	�

This plan includes all steps necessary for conversion of data file and
database entities. The plan includes an inventory of all reformatted files
and database entities and a schedule. The schedule must be communicated
with and approved by the responsible DBA and those in charge of all
affected systems. The data conversion plan must include a test plan for
data conversion programs/routines, as well as unit testing and a mock
conversion exercise.

� ���9����� ���	
��*����
��(���������%	

��� ����

When creating the inventory of reformatted files, pay special attention to:

���Static files,
���Files that receive I/O,
���Cycled files, and
���Data capture files.

� ���9��'�� ���������$	
	� ���,$	
	�	�������������

A critical element in the implementation plan is the scheduling of the
conversion of data files and databases to be changed. This is especially
important for databases accessed by interactive applications.

The sequence of steps are as follows:

���Shut down all systems which access the database to be converted.
���Convert the database from the old to the new format. For a large

database, this step could be quite lengthy.
���Install the new versions of the systems which accept the new database

format.
���Restart the systems.

� ���9����� �������������	������	���7�	���888

The conversion planning phase in a Year 2000 engagement is broadly
similar to that of a typical systems development project. Hence, normal
conversion considerations apply.

���������	

��������������
��������������� �����������������	
���

4-13

� ���9�������� 7�	���888������������	���*%���%��
	
����*�����

What makes conversion and implementation of systems for Year 2000
unique from the traditional systems is the criticality of a well-timed
implementation of the conversion and implementation schedule. Since the
implementation would involve a system for a Year 2000 program, it is
apparent that the system has to be installed sometime before the 21st
century, depending on the Year 2000 failure dates.

� ���9�������� �
��������7�	���888�*��
	��	
������	�����

The following steps must be undertaken for efficient and effective
installation planning:

���Refer to the overall Year 2000 Renovation Schedule to create a realistic
conversion and implementation schedule and estimates.
• It can be in a workplan format that defines required tasks and the

associated effort, time frames, and area of responsibility.
• It may also include implementation assumptions and dependencies

specific to timing, scope, and so on. This is prepared by the
implementation team with the technical group.

���A plan is developed for each application system or grouping of
application systems to be rolled-out.

���Provide enough leeway or buffer in the Contingency Plan for the
required time, effort and staffing during system installation.
• Contingency plans are created so that target dates are not missed in

case of an equipment breakdown, major personnel problems, or any
other unforeseen occurrences.

• A contingency plan includes fallback procedures, manual handling
of volume data, equipment backup arrangements, and the continued
use of the old system.

���������	

��������������
�����������������	
��� ���������������

4-14

:"�����	����	����������
���	�#���
��
���	��(�;

